
Reviewing a Java code snippet

Souvik Sarkar

October 2, 2021

API reference

For this section, I assumed that the method in the code sample is part of a class NeedlesInHaystack.

Class: NeedlesInHaystack

This class provides functionality to search for multiple needle strings within a single haystack string and
outputs the frequency of each needle’s occurrence.

Method: findNeedles

• Type: public static

• Parameters:

– String haystack: The text within which to search for the needles.

– String[] needles: An array of strings representing the words (needles) to be counted in the
haystack.

• Returns: void (prints results to the console)

• Usage: This method prints the number of times each string in the needles array appears in the
haystack string.

Example

String haystack = "Google␣Cloud␣provides␣APIs␣to␣use␣Google’s␣ML/AI␣capabilities.";

String[] needles = {"Google", "API", "documentation", "AWS", "ML/AI"};

new NeedlesInHaystack().findNeedles(haystack, needles);

Output

Google: 2

API: 0

documentation: 0

AWS: 0

ML/AI: 1

1

Suggestions for code improvement

After reviewing the code sample, I have the following suggestions for improvement:

• Limit the number of needles: The current code restricts the length of the needles array to five.
If this is a strict requirement, modify the message in the print statement within the if block to “Use
a maximum of five words!”. This provides clearer guidance than “Too many...”.

• Assign needles.length to a variable: Store needles.length in a variable to eliminate repeated
evaluation of the same expression. This also improves memory efficiency.

• Optimize haystack.split(): Move the following statement outside of the loop: String[] words =

haystack.split("[\"\’\t\n\b\f\r]", 0);. The words array does not change with each iteration,
so splitting the haystack only once is more efficient.

• Improve readability: In the third for loop, use k as the iterator variable, as i and j are already in
use in nearby loops.

• Consider using a HashMap: To store the frequency of each needle, consider using a HashMap. This
provides a more flexible and efficient way to handle the counting, especially if you want to return
key-value pairs or add further functionality later.

Suggested code

Here is the revised code, which incorporates the suggested improvements for efficiency and clarity:

public class NeedlesInHaystack {

public static void findNeedles(String haystack, String[] needles) {

// Store the length of the needles array in a variable

int needlesLength = needles.length;

// Split the haystack string once

String[] words = haystack.split("[␣\"\’\t\n\b\f\r]", 0);

// Create an array to store the frequency counts

int[] countArray = new int[needlesLength];

// Iterate through the needles and count their occurrences

for (int i = 0; i < needlesLength; i++) {

for (int j = 0; j < words.length; j++) {

if (words[j].compareTo(needles[i]) == 0) {

countArray[i]++;

}

}

}

// Print the results

for (int k = 0; k < needlesLength; k++) {

System.out.println(needles[k] + ":␣" + countArray[k]);

}

}

public static void main(String[] args) {

// Hard-coded values for demonstration

// Ideally, values should be received from standard input

String haystack = "Google␣Cloud␣provides␣APIs␣to␣use␣Google’s␣ML/AI␣capabilities.";

String[] needles = {"Google", "API", "documentation", "AWS", "ML/AI"};

findNeedles(haystack, needles);

}

}

2

Sample output

Google: 2

API: 0

documentation: 0

AWS: 0

ML/AI: 1

3

