Choosing between REST and SOAP for API
Development

Souvik Sarkar

June 20, 2021

1 Overview

When designing a web service, you must carefully evaluate the choice between SOAP and
REST. This guide explains their strengths, limitations, and use cases to help you make an
informed decision.

1.1 SOAP Overview

SOAP (Simple Object Access Protocol) is a protocol for exchanging XML-based messages
over a network. It uses Web Services Description Language (WSDL) to define:

e Resources, operations, and procedure calls
e Message structure, encoding, and encapsulation

e Bindings with network transport protocols

SOAP APIs are often auto-generated using tools that create server-side and client-side
code templates, but the resulting implementations can be challenging to develop and main-
tain.

When to Choose SOAP
SOAP is suitable for:

e Enterprise-level security: Supports WS-Security for encryption, authentication, and
message integrity.

e Complex transactions: Ensures reliability in distributed environments through fea-
tures like ACID-compliant transactions.

e Strict contracts: Enforces formal service definitions using WSDL, ensuring consistency
and reliability.



e Stateful interactions: Useful for cases requiring session management or multi-step
workflows.

e Legacy systems: Facilitates integration with older enterprise systems.

SOAP Limitations

e Tight coupling: Changes to the server often require updates to the client, reducing
flexibility.

e XML-only payloads: Mandatory use of XML increases message size and complexity.

e High overhead: SOAP messages are verbose, requiring more bandwidth and processing
power.

e Slower development: Complex implementation results in longer development cycles.

1.2 REST Overview

REST (Representational State Transfer) is an architectural style that leverages standard
HTTP methods for stateless web service interactions. REST APIs:

e Use URLSs to represent resources.
e Support multiple data formats, including JSON, XML, and HTML.
e Implement HT'TP methods such as GET, POST, PUT, DELETE, and PATCH.

e Can mark responses as cacheable, reducing client-server interactions.

Tools and frameworks can generate REST APIs and documentation from application
code, enabling rapid development.

When to Choose REST
REST is ideal for:

e Public APIs: Designed for widespread adoption and third-party integrations.
e Rapid development: Simple and flexible, with fewer constraints than SOAP.

e Data format flexibility: Supports lightweight formats like JSON, ideal for modern
web and mobile applications.

e Scalability and caching: Statelessness and response caching improve performance and
scalability.

¢ Broad adoption: REST is widely supported by tools, frameworks, and a large developer
community.



REST Limitations

e Security challenges: Requires additional measures (e.g., HTTPS, token-based authen-
tication) to ensure security.

e Limited operations: Restricts interactions to standard HTTP methods, which may
not cover all use cases.

e Scalability complexities: Point-to-point communication can complicate scaling with
multiple clients.

e Versioning difficulties: Major schema changes can break clients if not managed prop-

erly.

1.3 Decision Guide

e Use SOAP for secure, reliable, and stateful operations, especially in enterprise environ-
ments or when working with legacy systems.

e Use REST for simple, scalable, and fast APIs that support modern web or mobile
applications and prioritize flexibility.

Choose REST for most modern web services unless your requirements specifically align
with SOAP’s strengths, such as strict contracts or enterprise-grade security.

1.4 Other Considerations
e Assess your team’s expertise with SOAP or REST.

e Plan for future maintenance, including versioning strategies for the APIs.



	Overview
	SOAP Overview
	REST Overview
	Decision Guide
	Other Considerations


